What is the tens digit of the positive integer r?
1. The tens digit of r/10 is 3.
2. The hundreds digit of 10r is 6.
Data Suff.-Gmat Prep 1
How can I go about solving this problem?
Your input is appreciated....
Anonymous Wrote:Hi instructors,
Could you please see if I have a good understanding of the problem from what I have written below? Your input is greatly appreciated....
Is statement 1 insuf. because you are dividing by a power of 10 and when you divide by a power the number of zeros decreases, since here you are dealing with a whole number and no decimal. So, the tens place becomes the units place and therefore the answer is insuf.
In statement 2 you are multiplying by a power of 10, in this case, you are adding zeros, so the 6 now becomes the tens place as opposed to the hundreds place.
The answer is B.
Thanks
priyankadhawan223 Wrote:hey,
here's another way:
r=ABCD so the tens digit is "C". so our aim is to find C.
1)r/10=ABC.D and tens digit it 3, so basically this is saying B is 3. however, our aim is to find C. insufficient.
2) 10r=ABCD0 and the hundreds digit is 6. so basically C=6. sufficient!
thanks.