by Saurav Fri Oct 24, 2008 5:59 am
(1) There are 12 even integers greater than x and less than y.
The series has to be consecutive, since then only can there be 12 such even integers.
Let is consider the following possibilities where X can be ODD and X can be EVEN.
X (odd)
i1 (even 1), i2, i3(even 2), i4, i5(even 3), i6, i7(even 4), i8, i9(even 5), i10, i11(even 6), i12
i13(even 7), i14, i15(even 8), i16, i17(even 9), i18, i19(even10), i20, i21(even11), i22, i23(even12)
Y
Total Odd integers - 11
X (even)
i01, i02(even 1), i03, i04(even 2), i05, i06(even 3), i07, i08(even 4), i09, i10(even 5), i11, i12(even 6)
i13, i14(even 7), i15, i16(even 8), i17, i18(even 9), i19, i20(even10), i21, i22(even11),i23, i24(even12)
Y
Total Odd integers - 12
Hence not Sufficient
(2) There are 24 integers greater than x and less than y.
Again, this is only possible for a consecutive set of integers. Out of 24 integers there will always be 12 odd and 12 even.
Lets verify this-
X (odd)
i01(even 1), i02, i03(even 2), i04, i05(even 3), i06, i07(even 4), i08, i09(even 5), i10, i11(even 6), i12
i13(even 7), i14, i15(even 8), i16, i17(even 9), i18, i19(even10), i20, i21(even11),i22, i23(even12), i24
Y
Total Odd integers - 12
X (even)
i01, i02(even 1), i03, i04(even 2), i05, i06(even 3), i07, i08(even 4), i09, i10(even 5), i11, i12(even 6)
i13, i14(even 7), i15, i16(even 8), i17, i18(even 9), i19, i20(even10), i21, i22(even11),i23, i24(even12)
Y
Total Odd integers - 12
Sufficient