Hi,
Please help me with the following question.
S is the infinite sequence S1 = 2, S2 = 22, S3 = 222,...Sk = Sk-1 + 2(10k-1). If p is the sum of the first 30 terms of S, what is the eleventh digit of p, counting right to left from the units digit?
There are 2 ways to solve this question.
(1) Starting with the units digit column, all 30 of the terms have a 2 in that position so the sum of the units column would be 30 x 2 = 60. A zero would be written as the units digit of the sum and a six would be carried over to the tens column. and so on..
(2) We could also have seen that each column has one less 2 than the previous, so if we started out with 30 2’s in the first column, the 11th column must have 11 - 1 = 10 less 2’s, for a total of 20 2’s.
In (2), 11th column should have 11 2's right? how did 20 2's come here? Please explain.
Thanks,
Sathya.